

Bridging the Training-Inference Gap for Dense Phrase Retrieval

Gyuwan Kim Jinhuk Lee Barlas Oğuz Wenhan Xiong Yizhe Zhang Yashar Mehdad William Yang Wang

Open-Domain Question Answering (ODQA)

 Retriever-reader approach (e.g., DrQA, ORQA, REALM, DPR)

 Retrieval-only approach (e.g., DenSPI, Sparc, DensePhrases)

Reading Wikipedia to Answer Open-domain Questions (Chen et al., ACL 2017) Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index (Seo et al., ACL 2019)

Problems in Dense Retrieval

- Training a dual encoder \rightarrow constructing an index for efficient search
- Components of a dense retrieval system (training/validation/indexing/search) are **loosely connected each other**
 - e.g., model training does not directly optimize the retrieval performance from the full corpus
- Building a large-scale index is expensive, so even validating dense retrievers from different training objectives is challenging
 - More serious for dense phrase retrieval where the index size is on a billion scale

Dense Passage Retrieval for Open-Domain Question Answering (Karpukhin et al., EMNLP 2020)

Outline

• Goal: **minimize the training-inference gap** of dense retrievers to achieve better retrieval performance (focusing on **dense phrase retrieval**)

Efficient Validation of Dense Retrievers

- Measure retrieval accuracy on an index from a smaller subset of the full corpus (C)
 - Reading comprehension: corpus of only a single gold passage
 - C₀: gold passages from the development set (minimal set ensuring to contain answers)
 - **Random Subcorpus** (R_r): C_0 + random passages, $|R_r| = r|C|$
 - **Hard Subcorpus** (H_k) : C_0 + all context passages from top-k retrieval results using a pre-trained dense retriever
- The relative order of accuracy between models on hard subcorpus converges faster than random subcorpus

Background: Training of DensePhrases

- Contrastive learning with in-passage and in/pre-batch negatives
- Pre-training with generated question-answer pairs
- Knowledge distillation from a cross encoder
- Query-side fine-tuning

Learning Dense Representations of Phrases at Scale (Lee et al., ACL 2021)

Optimized Training of DensePhrases

• Unified loss (UL)

- We should find an answer phrase among all possible candidates at once in the test time
- \circ Put all negatives together into contrastive targets with different λ coefficients
- Use all tokens in context passages
- # of negatives: in-passage (L-1), in-batch (B-1 → B*L-1), pre-batch (B*T → B*T*L)

• Hard negatives (HN)

- Fix mistakes from the first round model
- Mining: extract model-based HNs from top-k retrieval results for questions in the training set
- Training: fine-tune a dual encoder by appending sampled hard negatives as negative targets for each training step

$$\begin{split} \mathcal{L}_{\text{train}}^{\text{org}} &= -\log \frac{e^{s(q,p^{+};c)}}{e^{s(q,p^{+};c)} + \sum_{(p^{-};c) \in N_{\text{inp}}} e^{s(q,p^{-};c)}} - \lambda \log \frac{e^{s(q,p^{+};c)}}{e^{s(q,p^{+};c)} + \sum_{(p^{-};c') \in N_{\text{inb}} \cup N_{\text{prb}}} e^{s(q,p^{-};c')}} \\ \mathcal{L}_{\text{train}} &= -\log \frac{e^{s(q,p^{+};c)}}{e^{s(q,p^{+};c)} + \sum_{(p^{-};c') \in N_{\text{inb}} \cup N_{\text{prb}} \cup N_{\text{hard}}} \lambda(p^{-}) e^{s(q,p^{-};c')}} \end{split}$$

ODQA Experiment Results

- Both unified loss (UL) and hard negatives (HN) are shown to be effective
- Improving passage retrieval by 2~4 points in top-20 accuracy and phrase retrieval by 2~3 points in top-1 accuracy from the original DensePhrases

Phrase Retrieval			Passage Retrieval										
Model	NQ	TQA	Model	Natural Questions					TriviaQA				
	Acc@1	Acc@1		Acc@1	Acc@5	Acc@20	MRR@20	P@20	Acc@1	Acc@5	Acc@20	MRR@20	P@20
DPR [♦] + BERT reader DPR [♠] + BERT reader	41.5	56.8	DPR [♦]	46.0	68.1	79.8	55.7	16.5	54.4	-	79.4	-	-
	41.5	56.8	DPR [•]	44.2	66.8	79.2	54.2	17.7	54.6	70.8	79.5	61.7	30.3
$RePAQ^{\diamond}$ (retrieval-only) $RePAQ^{\diamond}$ (retrieval-only)	41.2 41.7	38.8 41.3	DensePhrases [♥] DensePhrases♠	50.1 51.1	69.5 69.9	79.8 78.7	58.7 59.3	20.5 22.7	62.7	75.0	- 80.9	68.2	38.4
DensePhrases [♥] DensePhrases [♠]	40.9	50.7	DensePhrases [♡] -UL	57.1	75.7	83.7	65.2	22.0	62.0	74.6	80.6	67.6	33.3
	41.3	53.5	DensePhrases [♡] -UL-HN	58.6	75.7	83.4	66.1	21.9	60.3	73.3	79.6	66.1	32.3
DensePhrases [♡] -UL	43.5	51.3	DensePhrases ⁺ -UL	56.7	75.9	83.8	65.2	23.7	65.0	76.6	82.7	70.2	39.0
DensePhrases [♥] -UL-HN	44.0	47.0											
DensePhrases ⁺ -UL	42.4	55.5											

◊: trained on each dataset independently, ♠: trained on multiple datasets, ♡: trained on Natural Questions datasets

Conclusion

- Develop an efficient validation metric measuring retrieval accuracy on a subcorpus with hard passages from a pre-trained dense retriever
- Optimize training of dense phrase retrieval using unified loss and hard negatives by bridging the training-inference gap
- Significantly improve phrase/passage retrieval accuracy from the original DensePhrases in open-domain question answering
- Encourage more works on dense phrase retrieval with an efficient development cycle