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. End-to-end Spoken Language Understanding Model Architecture Experiments

: . o ! (a) Pre-training (b) Fine-tuning

: Goal: Understanding the speaker’s intent : . .
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' . Acoustic Model Acoustic Model - Pre-training on Librispeech speech only
e ‘ - Both pre-training methods are effective

Speech : :
- The usage of the synthesized voice

affects to the result of Snips dataset

(3) Domain-Adaptive Pre-training (DAPT)
- Leads to further improvement
- Remarkably effective on a more noisy SLU
data (far field in SmartLisght dataset was
recorded from 2 meters away)

- Initialized from pre-trained BERT-base

Motivation 1. Acoustic model (AM)

- Estimates the phoneme posterior from raw waveform
- Trained with ASR task before ST-BERT pre-training
- During the ST-BERT training, AM remains frozen

(2) Domain-Adaptive Pre-training (DAPT)
- Continues pre-training with domain-
specific speech-text pair data, when those
are available

1. Pre-trained Language Models (PLMs)
- Learn rich textual information
- Show the outstanding performance for most NLP task!

2. Phoneme and subword embedding
- Subword embedding is obtained from subword
embedding matrix via one-hot encoding method
- Phoneme embedding is a weighted sum of phoneme
embedding vectors based on the phoneme posterior
- When pre-training, we concatenate both embeddings for the
iInput of transformer layers

(3) Fine-tuning
- Fine-tuning on FSC, SmartLights and
Snips datasets
- Use synthesized audio for Snips dataset
- Measure performance twice

2. Speech & Transcript E
- Share the same meaning (4) Data shortage scenario
- ST-BERT shows comparatively marginal
performance degradation
- Uni-modal pre-training on speech suffers
from a relatively large performance drop
- Leveraging textual information during pre-
training is critical when limited SLU data

are available

- Can be translated to each other!
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2. Results
(1) Main results
- For all datasets, our model shows
remarkable results

3. Transformer layers
- We followed BERT structure

Leverage PLM’s textual knowledge
by cross-modal language model pre-training
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1. Cross-Modal Masked Language Modeling (CM-MLM)

- Randomly samples 15% of input elements and replaces them with [MASK] token

- Model needs to predict a masked phoneme or subword

- To prevent model from easily predicting the masked phoneme from its neighbor, masks out the entire
phoneme embedding span that shares the same target phoneme

2. Cross-Modal Conditional Language Modeling (CM-CLM)

- Masks out the entire sequence of target modality

- Model needs to predict the masked representation solely conditioned on the source modality
- Two types of CM-CLM exist: speech-to-text and text-to-speech CM-CLM

- More challenging task than CM-MLM
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