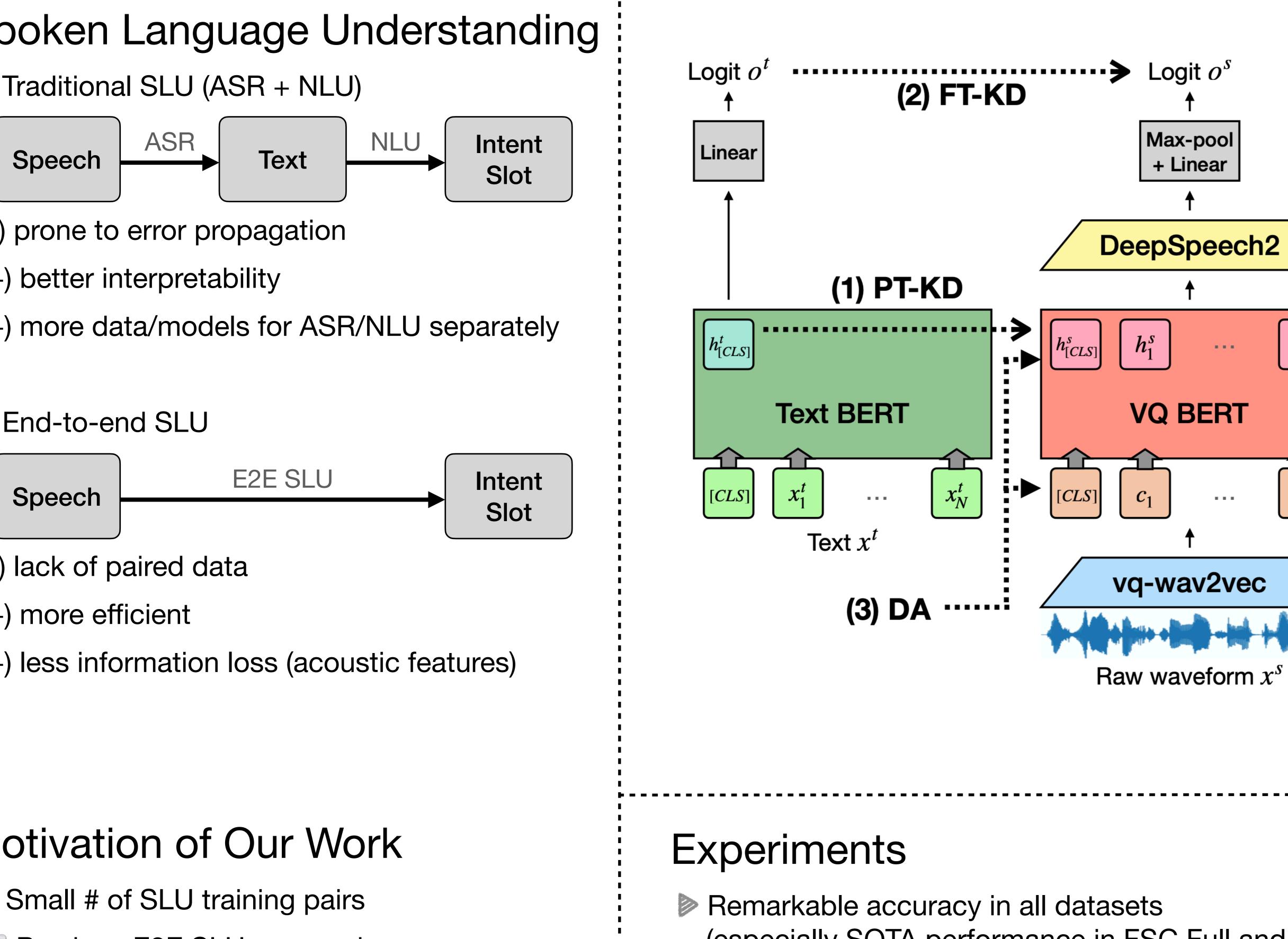
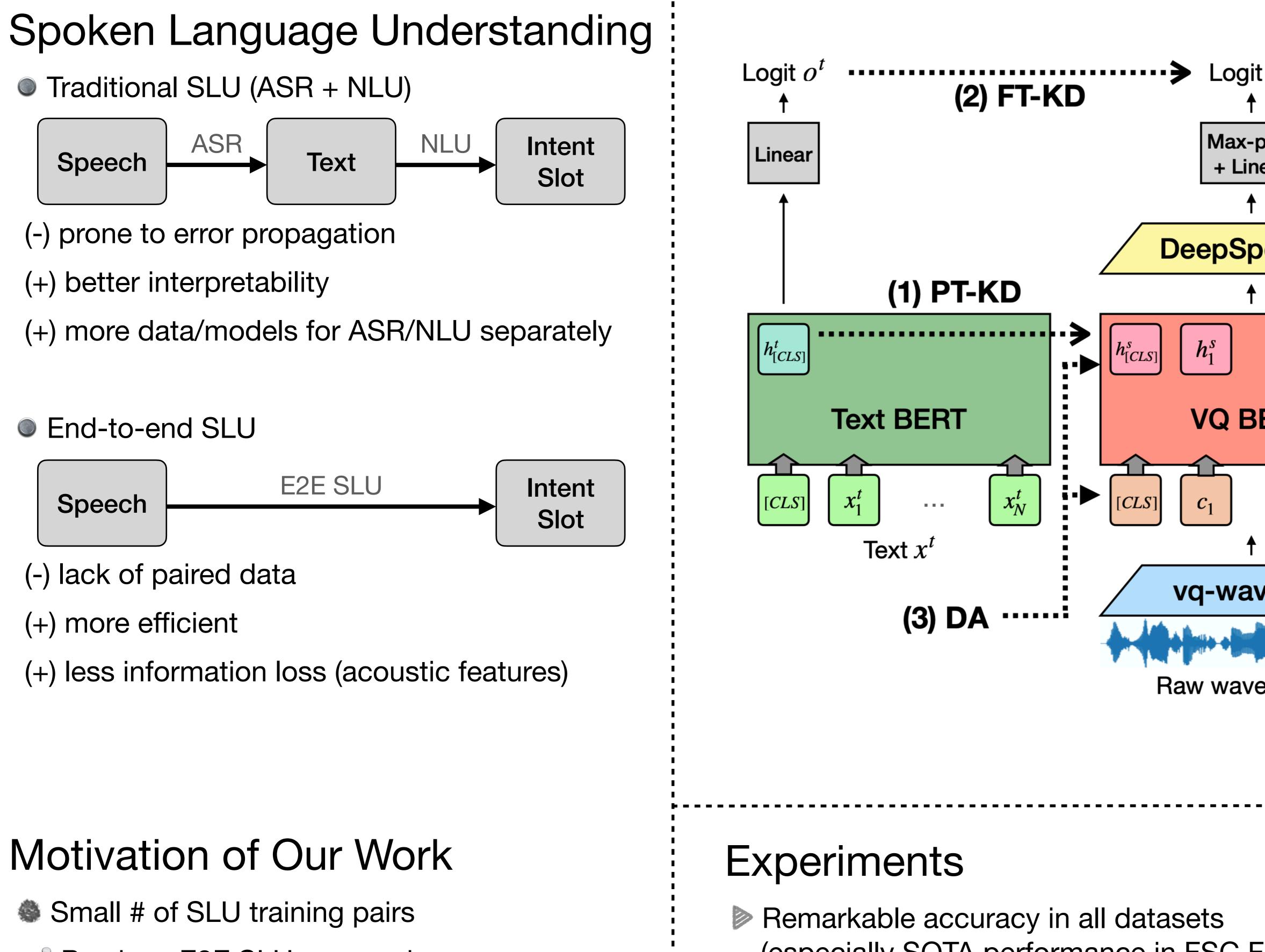


Traditional SLU (ASR + NLU)



- (-) prone to error propagation
- (+) better interpretability
- (+) more data/models for ASR/NLU separately

End-to-end SLU



- (-) lack of paired data
- (+) more efficient
- (+) less information loss (acoustic features)

Motivation of Our Work

Small # of SLU training pairs

- Previous E2E SLU approaches: fine-tuning on SLU after pre-training on ASR
- Our solution: injecting textual information to a speech encoder by knowledge distillation
- Recent multi-modal works are successful
- Most of them are for vision-and-language
- How about speech-and-language?

Two-Stage Textual Knowledge Distillation for End-to-End Spoken Language Understanding Seongbin Kim^{*}, Gyuwan Kim^{*}, Seongjin Shin, Sangmin Lee (*: equal contribution)

 h_T^s

. . .

								Method	Full		10%							
Remarkable accuracy in all datasets (especially SOTA performance in FSC Full and 10%)									1010tilot	Valid	Test	Valid	Test					
(especia	In FS	CFu	II and	10%)	Lugosh et al. [6]	-	96.6	-	88.9								
All components (PT-KD, FT-KD, AM-PT, DA) are helpful										+AM-PT [6]	-	98.8	-	97.9				
										+FT-KD [13]	-	99.0	-	98.1				
						Price [17]	92.5	99.1	-	-								
DA degrades performance on SNIPS (synthesized data with a single speaker)										+DA	94.4	99.4	-	-			Smartlights	
										+AM-PT	94.8	99.3	-	-	Method	SNIPS		
										+DA	96.6	99.5	-				Close	Far
	FSC (336)			SNIPS (7)			Smartlights (6)			VQ-BERT +DS2	93.1	98.9	87.3	97.0	VQ-BERT +DS2	86.4	75.9	47.9
	Train	Valid	Test	Train	Valid	Test	Train	Valid	Test	+PT-KD	94.1	99.0	90.7	98.5	+PT-KD	88.3	81.3	51.2
										+FT-KD	96.2	99.6	93.3	99.2	+FT-KD	95.3	84.6	59.6
# Speakers	77	10	10	1	1	1	48	2	2	+AM-PT	96.4	99.6	94.3	99.3	+AM-PT	96.7	92.2	70.5
# Utterances	23,132	3,118	3,793	13,084	700	700	1,162	166	332	+DA	97.8	99.7	96.2	99.5	+DA	95.7	95.5	75.0

Takeaway: (1) using textual information for training SLU model is helpful

Model Architecture

- SLU model: vq-wav2vec BERT + DeepSpeech2
- Text model: RoBERTa-base

Training

Sorrow pre-trained vq-wav2vec BERT

- **Fix vq-wav2vec part**
- Search Further pre-training
- * Masked language modeling on 960h of Librispeech
- **Knowledge Distillation (PT-KD):** sequence-level contextualized representations (L1 loss)
- Solution AM pre-training (AM-PT) for better initialization
- Fine-tuning for SLU
- Intent classification
- Knowledge Distillation (FT-KD): predicted logits (L1 loss)

(2) how to train with texts matters (in our case, knowledge distillation)

* Data augmentation (**DA**): span masking - code, time, channel

